A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium.
نویسندگان
چکیده
A comprehensive culture-independent assay, called Q-FAST, was developed for concurrent identification and quantification of active microorganisms involved a specific function in a given microbial community. The development of Q-FAST was achieved by integrating the concept of stable isotope probing technique into a new quantitative fingerprinting assay called real-time-t-RFLP for microbial community structure analysis. The Q-FAST was successfully validated by using a three-member artificial microbial community containing a known naphthalene-utilizing bacterium (Pseudomonas putida G7) and two nonnaphthalene-degrading bacteria (Escherichia coli and Bacillus thuringiensis). The application of Q-FAST to identify and quantify a guild of naphthalene-utilizing microorganisms in soils revealed the involvement of eight members, with six members relating to several phylogenetic groups of eubacteria (three in beta-proteobacteria, two in gamma-proteobacteria, and one in genera Intrasporangium of Gram-positive bacteria) and two members showing no close phylogenetic affiliation to any known bacterial sequences deposited in GenBank. The quantity of three members belonging to beta-proteobacteria accounted for 34% of total 16S rDNA copies measured from the "heavier" fraction of DNA that was contributed from the DNA of microorganisms capable of incorporating 13C-labeled naphthalene into their genetic biomarkers. The other five members composed 66% of total 16S rDNA copies of active naphthalene-utilizing populations measured. Offering a powerful tool for studying microbial ecology, Q-FAST thus opens a new avenue for deeper exploration of microbial-mediated processes, mainly the quantitative relationship between microbial diversity and microbial activity in a given environment.
منابع مشابه
A Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function
The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic wast...
متن کاملUse of substrate responsive-direct viable counts to visualize naphthalene degrading bacteria in a coal tar-contaminated groundwater microbial community.
A microscopy-based method was developed to distinguish naphthalene-degrading bacteria within the microbial community of a coal tar-contaminated groundwater system. Pure cultures of Pseudomonas putida NCIB 9816-4 were used to develop the substrate responsive-direct viable count (SR-DVC) method. Cells were concentrated on membrane filters, placed on agar plates of Stanier's minimal basal salts me...
متن کاملA Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function
The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic wast...
متن کاملQuantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia.
A quantitative fingerprinting method, called the real-time terminal restriction fragment length polymorphism (real-time-t-RFLP) assay, was developed for simultaneous determination of microbial diversity and abundance within a complex community. The real-time-t-RFLP assay was developed by incorporating the quantitative feature of real-time PCR and the fingerprinting feature of t-RFLP analysis. T...
متن کاملA novel microbial consortium from sheep compost for decolorization and degradation of Congo red
Congo red is a synthetic azo-dye dye with many industrial applications. The effluents containing azo dyes are causing several environmental hazards and thus should be treated prior to their discharge. The present work investigates the possible use of a novel microbial consortium from sheep compost for the decolorization of Congo red dye. The effect of different parameters including contact time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 39 24 شماره
صفحات -
تاریخ انتشار 2005